The Shi arrangements and the Bernoulli polynomials
نویسندگان
چکیده
منابع مشابه
Primitive derivations, Shi arrangements and Bernoulli polynomials
LetW be a finite irreducible real reflection group, which is a Coxeter group. A primitive derivation D, introduced and studied by K. Saito (e.g., [4]), plays a crucial role in the theory of differential forms with logarithmic poles along the Coxeter arrangement. For example, we may describe the contact order filtration of the logarithmic derivation module using the primitive derivations ([10, 1...
متن کاملCongruences concerning Bernoulli numbers and Bernoulli polynomials
Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the London Mathematical Society
سال: 2011
ISSN: 0024-6093
DOI: 10.1112/blms/bdr118